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Energy distribution functions for the products in two classes of three-atom unimolecular reactions performed
in beam experiments are derived which are much more realistic than the prior distribution functions (PDF)
of Levine and Bernstein without being more complicated. In a first step, we deal with light-atom emission
processes governed by short-range forces. Contrary to what is generally believed, we emphasize the
applicability of statistical theory of energy distributions to such reactions in which the change in energy
partitioning from critical configuration to products is weak if not negligible. In a second step, we treat within
the framework of phase space theory (PST) the more usual case of processes governed by long-range forces
for which, however, there exists no realistic distribution functions. Comparison with experimental results or
with results of simulations and/or results obtained using PDF, PST, or the statistical adiabatic channel model
(SACM) is done for the following processes: (i}¢— C, + H (model alkyl dissociation reaction), (ii) 8

— O, + H, (iii) NO, — NO + O, and (iv) Ak — Al, + Al. For reaction i which proceeds through a barrier

and for reaction ii which is barrierless but involves strong angular anisotropies in the exit-channel part of the
potential energy surface, the distributions derived by our method are much more realistic than those obtained
using PST or SACM.

I. Introduction governed by short-range forces as noted in the recent exhaustive

o . review by Baer and Hasé.

Energy distributions among the products of unimolecular \ye have shown recently, however, that the rule regarding
reactions performed in beam experiments are part of the reducedpe modification of energy partitioning admits some exceptions,
set of experimentally available microcanonical informations on namely reactions of the kind ABE- AB + C where C is a
chemical reactionk. The research of the main factors governing light atom (typically a hydrogen atom) for which exit-channel
these_distributions is a necessary ste_p_toward a better U”der‘coupling effects are very often negligible whether there is a
standing of gas-phase chemical reactivity. barrier or not8 The reasons why this is so are related to the

For processes governed by long-range forces and involving short time of residence of the system on the product side of the
a Iong-lived energized molecule before dissociation, the statisti- critical region (at the usual energies:gfl eV) and to the weak
cal theory of molecular collisions™*3 is perhaps the best efficiency of the impulsive mechanism of repulsion between B
compromise for the qualitative/quantitative study of product and C (see section II.Bf. Energy distributions are thus
energy partitioning? Indeed, this theory is interpretative in  expected to be roughly the same at the TS and in the products,
nature since it is based on several assumptions, the main onegyhich does not mean that conventional methods such as phase
being energy randomization and the concept of transition statespace theory (PST) which deal with loose TS can be applied.
(TS). Moreover, the simplicity of the numerical calculations This is why we devised a method for calculating the recoil
involved permits the study of how energy distributions vary energy distribution at the ™8(and thus in the final products)
with parameters such as translational energy of the reagentsyyhich, to our knowledge, did not previously exist.

exoergicity (for bimolecular reactions), atomic masses, disper-  The main goal of the present article is to support our previous
sion constants, ef®. Also, some key steps in the development analysis in the light of the two following processes

of the theory lead straightforwardly to the role of angular
momentum constraints. Last but not least, further assumptions CH—C,+H (1.1)
may allow the simplification of the developments, the ultimate
stage being the derivation of simple formufasvhere the (model alkyl dissociation reaction) and
preponderant factors of interest appear explicitly.

For processes proceeding through a tight TS corresponding, OH—0O,+H (1.2)
for instance, to a barrier, the dynamics associated with system
motion from critical configuration to productseferred to as extensively studied by Wolf and Ha8eP and Hamilton and
exit-channel coupling effec&-modify in most cases the energy  Brumer:(1.1) and Schinke et &t (1.2). Such a work requires
partitioning as the system dissociates. Though a statisticalfirst the extension of our method to three-atom unimolecular
treatment can be used to predict energy distributions at the TS,processes performed in beam experiments for which the total
there is no simple analytical way to deduce their distortions angular momentum is roughly negligible (reactions 1.1 and 1.2
upon passing from TS to products. Hence, there is no generalhave been studied using this assumpt®n)Due to the
statistical theory of energy distributions applicable to any process simplicity of the problem, we are able to derive energy
distribution functions, i.e., analytical expressions where the
€ Abstract published irAdvance ACS Abstractdjovember 15, 1997. preponderant factors governing the dynamics appear explicitly
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(see Table 1 in section I1.B). In this regard, they are much
more realistic than the prior distribution functions (PDF) of
Levine and Bernstefd without being much more complicated.
We also deal within the framework of PST with the more usual
case of reactions governed by long-range forces for which,
however, a similar treatment does not exist (see Table 2 in
section I.C). The first set of distributions is applied to reactions
1.1 and 1.2 (section Ill.A) whereas the second set is applied to
the following processes (section 111.B):

NO,—NO+ O (1.3)

and

Al;—Al, + Al (1.4)
studied by Reid, Reisler, and co-work&rd.3) and Peslherbe
and Hasé (1.4). Comparison is done between our method and
(a) dynamical calculations or experimental results and (b)
standard statistical theories such as the PDF method, PST, o
statistical adiabatic channel model (SACM). A conclusion
follows (section 1V). The paper may be understood without

the need to read the final appendices where the mathematical

developments are presented.

Il. Energy Distribution Functions

A. Bases. The process of interest is of the type ABE
ABC* — AB + C. In practice, jet-cooled ABC molecules are
optically excited to a pure vibrational level at an eneEjyn
excess of the dissociation enerBy, followed by the unimo-
lecular reaction ABC*— AB + C.24 The energy excess with
respect to the zero-point level of ABE=E' — Dy. Ep being
the zero-point energy, the energy disposal with respect to the
bottom of the product channel is thé&s = E + Eo. In such

r
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often referred to as exit-channel coupling efféétsApplying

the microcanonical postulate of statistical mechanics to the
strong coupling region (SCR) allows for calculating the distribu-
tion of the energy at the TS but there is no simple way to
calculate analytically the transformations this distribution
undergoes from the critical configuration onto the products.
However, we have shown recerfithat when (i) the system
has a linear geometry at the saddle point and (ii) C is very light
with respect to A and B (typically a hydrogen atom), the energy
partitioning does not evolve significantly on the way from the
critical configuration to the products. Feature i causes the
modification of the rotational angular momentum of AB to be
inefficient when B and C repel each other (no impulsive
mechanism) and feature ii makes the relative velocity of C with
respect to AB sufficiently large for the time of residence of the
system on the product side of the barrier to be very short (for
the usual values of the kinetic energy, sayl eV). In that
region, the torque the rotating diatomic AB creates on the
departing atom C thus has no time for the rotational angular
momentum of AB and orbital angular momentum of C with
respect to AB to exchange motion. Since fa)oes not vary
t)etween the TS and the products and (b) vibrational degrees of
reedom are usually weakly coupled to the remainder of the
Hamiltonian (see Appendix A), the translational energy is also
expected to reach its final value at the critical configuration. In
that case, product energy distributions are identical with energy
distributions at the TS.

The way the energy is partitioned at the TS is central for the
determination of the distributions. As shown in ref 18 and in
section 2 of Appendix Ajt is very important to include the
potential energy of interaction between C and the rigid rotor
AB in the translational energy, in addition to the purely kinetic
terms(see eqs A.1 and A.5). When the system is at the TS, a
large part of the translational energy is in the potential energy.

experiments, the average magnitude of the total angular pyring the repulsion between C and AB, the potential energy
momentumJ is most of the time so low (abot h units for  gecreases and the kinetic energy increases such that their sum
NO,*) that we keep it at zer&. This assumption considerably . does not vary (we are still assuming that C is very light). It
simplifies the developments. The coordinate system used injs then meaningless to compare the distribution of the kinetic
this paper is given in the first section of Appendix A. _energy at the TS with that in the products, the later being

In the interval between the optical excitation and the final obviously much more excited than the former. Using the quasi-
dissociation, ABC* is supposed to wander about in the region ¢jassical trajectory (QCT) method, Wolf and Hase were the
of the phase space associated with the strong coupling region 200 15 observe that the sum of the barrier heiyptand the
(SCR). Consequently, the products are equally likely to be on yinetic energy at the TS led to a value in good agreement with
any trajectory emerging from the SCR, that is, crossing the TS ¢3¢ product translational energy. However, repladiggy the

or dividing surface delimiting the SCR in the direction of the potential energy of interaction mentioned above (see eq A.1)
products. The density of probability that given observakigs leads to an even better agreem&nt.

glveerl\‘ Qj\ve the valuesy, ..., g at the transition state is thus The distribution functions of interest are derived in Appendix
B and are collected in Table 1. The only assumption used is a

harmonic angular dependence of the potential energy at the TS.

As shown further below, feature i (linear geometry at the
saddle point) is not a necessary condition for the validity of the
formulation (reaction 1.2, which does not involve a linear TS,
is well-described by our method). Feature i guarantees,
however, an even better agreement between the model and the
dynamical calculations.

F(ay, - O B)

FE (I1.1)

Py, - Oy) =

whereF(qy, ..., On, E) is the flux of trajectories crossing the TS
with Q1 = q, ..., Qv = gy andE, andF(E) is the total flux of
trajectories crossing the TS wita In this work, theQ;'s are
limited to scalar observables, that is, the vibrational en&gy
of AB, j—or equivalently the rotational enerdis of AB—and C. Reactions Governed by Long-Range ForcesPST is
the recoil energyEr of C with respect to AB. The general the simplest microcanonical statistical theory of chemical

procedure adopted in this paper for the calculation of both the reactions governed by long-range for€és:.13 One of the
numerator and the denominator of eq Il.1 is presented in main assumptions of PST we shall adopt here is that the potential

Appendix A. energy of interaction between AB and C is of the kM@R) =

B. Light-Atom Emission Processes Governed by Short-  —C/R". Though the angular dependence of the potential energy
Range Forces. For reactions governed by Short_range fOfCQS, is not taken into account, PST has often been shown to lead to
involving for instance a barrier between reactants and products,accurate energy distributions.
there are in the general case changes in energy partitioning as Consider the reverse reaction of recombination ARC —
the system proceeds from TS to products. These changes ardBC. The maximum value of the orbital angular momentum
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TABLE 1: Energy Distributions among the Products of
Three-Atom Unimolecular Reactions ABC— AB + C
Involving a Barrier along the Reaction Path Separating the
Well and the Products

| 1 1 \1
S
(mre2 uR* 2)

P(j,Ev) 2512 ( i 2) 1/2
— — E.-V,—E, — =
a(E - Vo)zll/z P 0 Vo9
P() 9712 .2\3/2
2 1/2(E — Vo~ J2_|)
37(E — V)l
PED B PE-V) —E™ mr.’
WI =
37(E — Vp)* (1 — p)°E P mr2 + uR*?
P(Ev) 2
— % _(E.—-V,—E
(E—Vo)z( p— Vo~ E)
PE) T e -y i Ers (1Nt pE
p(E—Ep) v
(TPT(ET —(L-pVo—pB)| +

(1= p)"(Er — vo)(§ -

s (ET —(1—p)Vo— pE)l’ ))
AN = 0E -V

if E;>(1-—p)V,+pE

aC is assumed to be very light with respect to A and B (typically a
hydrogen atom)Er is the product energy disposal, that is, the sum of
Ev, Er, andEr. E is the excess energy equal B — Eo whereEg is
the zero-point energy of ABm andu are, respectively, the reduced
masses of AB and C with respect to AR.is the equilibrium distance
of AB. Vj is the barrier height, i.e., the energy difference between the
saddle point and the bottom of the products valley.

L consistent with the recombination Bt is (for more details,
see ref 13 and references therein)

L(Er) = by(Ey) (2uEn)*™ (11.2)

where bu(Er), the maximum value of the impact parameter
consistent with the capture B, is given by

n—2 (2—n)/2n
n

n Cn 1n

2E;

(11.3)

bu(Er) = [

Replacingbu(Er) in eq 11.2, by its average values,(E)

bM(ET) B r]3/2(n _ 2)(2—n)/2n{Cn)1/n
E  n-1 \z "9

does not modify qualitatively the shapelqgf(Er) which results
in

b.(E) = [ dE;

Lu(Er) ~ by (E) (2uED™? (11.2)

The reason is that the approximdtg(Er) depends orEql/2
whereas the exact one dependsEf’2-1" (see eqs 1.2 and
11.3). Moreover, the largen is, the lower the quantitative
difference.

Equation 1.2 suggests that the mechanism of capture is
correctly described by the following assumption: two fragments
colliding with an impact parametérlarger tharb,y (bay Stands
for ba(E) in the following) do not feel any mutual interaction
all along their motion. On the other hand, a valuegbdbwer
than or equal td,, makes the probability of capture equal to
one. The TS is thus defined bg* ~ by, and V(RY) ~ 0.
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TABLE 2: Energy Distributions in the Products of
Three-Atom Unimolecular Reactions ABC— AB + C
Governed by Isotropic Long-Range Forced

bav n3/2(n _ 2)(2—n)/2n (Cn)l/n
n—1 2E
| 1 1\
mre” uby,
P(J rEV) 3 . j2
W with EOSEVSEP_E

P() 3 i2
((2E)3/2 |1/2) (E - J2_|)

P(Ex) 3((1-pE—Ey) mr,’
—3/21/2 with p= 2 2
4(1- p)E)¥*Ex mre” + by,
P(E.) (%w)(gp —E)"?
h (ﬁ?”zll&)mi“[m@u&)ﬂ% re(2m(E — ET))M]
P

aThat is, those involving a potential energy between AB and C of
the kindV(R) = —C/R". M, u, re, Ep andE are defined in the footnote
to Table 1.

TABLE 3. Parameters Used in the Calculations of Energy
Distribution Functions?

reaction m u re R Cs Vo
1.1 6 ~1 1.33 2.7 3.5
1.2 8 ~1 1.33 2.2 0
1.3 7.47 10.43 1.21 496
1.4 13.5 18 2.6 38153

a2mandy are in atomic mass unitge and R in angstromsCs in
kcal mott A6, andVj in kcal mol2.

According to the principle of microreversibility, this TS is also
the one for the dissociation process.

The assumption above allows for deriving energy distribution
functions as shown in Appendix C. These functions are
collected in Table 2.

lll. Application to Some Processes

A. Processes Governed by Short-Range Force®eaction
.1 (C;CH — C=C + H) is a prototype of radical alkyl
dissociation processes such a$l€— C,Hs + H. It has been
studied theoretically by Wolf and Hase on various model
potential energy surfaces, using the QCT metH8d. The
results considered here are the recoil and vibrational energy
distributions P(Er) and P(Ey) obtained by Hamilton and
Brumer® using the surface Il.A which involves a barrier of
3.5 kcal/mol along the reaction path. The geometry of the
system at the saddle point is linear. The total endigas
been kept at 10 kcal/mol. Since we are dealing with classical
trajectories, there is no zero-point level and the energy excess
E reduces toE,. The other parameters required for the
calculation ofP(Ey) andP(Ey) (see Table 1) are given in the
first row of Table 3.

Comparison between (i) our energy distribution functions,
(i) those found using PST, and (iii) QCT calculations is given
in Figure 1. Contrary to PST, our formulation leads to an
excellent agreement between statistical energy distributions and
the QCT results. Hamilton and Bruni&t claim that exit-
channel coupling effects are responsible for the discrepancies
observed between PST and QCT distributions. From our point
of view, this interpretation is questionable since in the very
present case exit-channel coupling effects are negligible. As a
matter of fact, neither the orbital angular momentum of H with
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— (d) Iy EP = EV - 12/2| VB(¢) i

= .\. a

y

Figure 2. Scheme depicting the calculation of the rotational energy
distribution P(j,Ey) as explained in the text.

Figure 1. Translational (a) and vibrational (b) energy distributions in Potential energyW/(Rr,¢) can therefore be written as
the products of the model reactiontC— C, + H; QCT (histograms);
PST (solid lines); our method (dashedotted lines). V(Rr,¢) ~ v(r) + V(Rro,¢) for R= R (I.A.1)

whereu(r) is the free AB diatomic potential energy(Rre,¢)

is the interaction potential energy between the rigid rotor AB
(kept at its equilibrium distance,) and C, and R* gives the
position of the TS. The potential energ{Rre,¢) in the region

of the TS is roughly the sum of (a) an isotropic attrative term
Va(R) = V(Rre 55° or 125) like those involved in processes
governed by long-range forces, of which the dependence with
respect tdr is that of V(Rre,¢) along the reaction paths and (b)

[ an angular dependent tertz(¢) = V(RF.re,¢) accounting for
the bending motion. To the attractive teMa(R), we apply
the assumption introduced in section II.C, i.e., the system
behaves as Wa(R) & 0 at the TS, found to be located &t ~

2.2 A by Dobbyn et at! Thus, the potential energy at the TS
reduces td/g(¢). Its dependence in terms gfis the same as

in Figure 18 of ref 21, the only difference being thé@{(55°) =

respect to g@nor the rotational angular momentum of Gary
significantly from the TS to the separated prodi#és More-
over,the distributions we calculate at the TS from our method
are the same as those found in the products by the QCT method
which tends to prove that both recoil and vibration energies
are conserved during the CH bond cleavage. Hamilton and
Brumer proposed a statistical dynamical approach called “exit
channel corrected PST” (ECCPS#}. This method consists
of running trajectories from the product phase space, the initia
conditions being sampled microcanonically. The trajectories
which do not reach the critical configuration are discarded and
the statistical distributions in the products are built from the
initial conditions of the remaining trajectories. As a matter of
fact, ECCPST leads to the same distributions as those found
from our method. In other words, the distributions do not evolve .
from the products to the TS, and by microreversibility, we arrive Ve(125) = 0 eV instead ok —0.13 eV_._ .
at the same conclusion as above, namely energy transfers are From €as A.'17 and |1.1, the probability distributif,E.)
inefficient upon passing from TS to products. The same at the TS is given by
concluspn can be deduced for the rotational gnergy dlstr.lbunon. P(i,E,) 0 A E,) (1.A.2)

Reaction 1.2 (QH — O, + H) has been studied theoretically
by the Schinke group: This is certainly the most complete  \yhere Ag(j,Ey) is the availablep angle range consistent with
theoretical study of a three-atom unimolecular reaction per- the constraint (see eq A.8.a)
formed so far. They largely focus their analysis on the
distribution of the product rotational angular momentum. j2
Concerning the shape of the DMBE IV potential energy surface Ve(@) =B~ B/ — 5 (NLA3)
of Pastrana et &’ in the transition state area, it turns out that
there is no barrier along the reaction paths defined by two values  Figure 2 depicts the calculation Bfj,E,). In the left upper
of the anglep between GH and OO (G is the center of mass of panel a, the right-hand part of eq Ill.A.3 is represented as a
O), namely 58 and 128, as can be seen in Figure 18 of ref function ofj. In the right upper panel B/s(¢) is represented
21 wherey has the same meaning és There is however, a  in terms of$. For a given value of, the availablep angle
hill between these two paths, the top of which corresponds to range defined by eq I11.A.3 is reported in the lower panel c
¢ =90°. In other words, there is a barrier along the path defined according to the graphic procedure suggested by the dashed
by ¢ = 90°. Therefore, this reaction is intermediate between |ines. The point in pannel b corresponding to the hilltop at
those governed by long-range attractive forces and thosego’ is connected to the poif in panel c. Foj lower thanjp,
governed by short-range repulsive forces, and the expressionghe ¢ angle domain decreases smoothly since the potential walls
given in Table 1 cannot be applied directly. Instead, we shall are roughly parallel. Foy larger thanjp, i.e., when the right-
consider the following reasoning. hand part of eq Ill.A.3 is lower than the energy Bf the ¢

As explained in Appendix AEy is supposed to be weakly angle domain is significantly shrunk leading to a more abrupt
coupled toEr and Er from the TS onto the products. The decrease d?(j,E,). Moreover, the largeE, the later the position
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ok} T T Y T

E=015eV E=0.25ev
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Figure 3. Rotational energy distributioR(j,Eo) in the products of the
reaction QH — O, + H for four values of the excess enerByQCT
(solid lines); PST according to our formulation (dashed lines); SACM
highest populated states (vertical bars); our method (dastetted
lines); quantum results (filled circles joined by a thin solid line).

of the beak poinP'. This can be observed in Figure 3 which
is similar to Figure 15 extracted from ref 21. It represents
P(j,Eo) (for the lowest vibrational level of § as obtained by
Dobbyn et ak! for four resonance energigs (0.1513 eV,
0.2517, 0.3507, and 0.4471 eV) from four methods: QCT (thick
solid curves), PST according to our formulation (short dashes),
SACM highest populated states (vertical bars), and time-
independent quantum approach (filled circles, thin solid line)
in the fourth case. The quantum results are not those displaye
in Figure 15 of ref 21 but an average of the rotational state
distributions over five energies distributed in a small domain
around 0.4471 eV (see Figure 9 in ref 21). Concerning the
PST results, we have found that the maximjuwalues for each
resonance enerdy, that is,

jma ) = (2E)™ (IL.A.4)

are in much better agreement with dynamical results than those

obtained with PST as implemented by Dobbyn et al. Equation
I1I.A.4 has been deduced from eq A.8.a with = Ep, Ep — Eg

= E andV(R¥ re,¢) = Ve(¢) = 0 (¢ = 55° or ¢ = 125). The
reduced moment of inertibof the system is given by eq A.7,

and the parameters used are given in the second row of Table

3. We have added ouP(j,Ep) results (dasheddotted lines)
obtained as described in Figure 2 (see also eq Ill.LA.2 and
II1LA.3), Vs(¢) being approximated by the following polynomial
expression

6

V() = Z)cmw (IN.A.5)

with ¢g = — 0.31625,c; = — 0.1651,c; = — 8.9653x 1073,
Cc3=1.9284x 1074, ¢4 =—1.972x 1076, c5 = 9.5758x 1079,
Ccs = —1.7733x 10711 The validity of our method is clearly
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‘]NO

Figure 4. Upper panel: maximum value ¢fin terms of the excess
energyE in the products of the reaction N©> NO + O; see the right
eq C.3.b withEy = Eo. Lower panel: rotational energy distribution
P(j,Eo). Experiment results shown by circled 12y, filled circles; ATz,
open circle), third expression of Table 2 by a solid line.

demonstrated from the good agreement between our results and
those from QCT. Dobbyn et al. showed that the rotational state
distribution at the TS as obtained from the trajector@g¢y)
agrees quite well with the rotational distribution obtained from

Oa microcanonical selection at the TS’*,(), i.e., a random

selection of the phase space states in the dividing surface (see
Figure 17 in ref 21). Both are in very good agreement with eq
I1I.A.2, which is not a surprise (at least f&¥,) since eq I1l.A.2

is a consequence of the microcanonical assumption at the TS.

In the case of the reaction 1.1 & — C, + H), the total
energyEp (=0.5 eV) is roughly three times greater that the
barrier heightVy. The recoil velocity between H and,Gs
sufficiently large in average for the bending forces not to have
time enough to act (no funnel effect as shown in ref 18),
preventing any rotationaltranslational energy transfer. Thus,
there is no difference between product distributions at the TS
and in the products. For reaction 1.2 40— O, + H), the
total energyEp ranging from 0.15 to 0.45 eV is hardly greater
than the top of the hill£0.27 eV) except in the fourth case
(0.45 eV). Then, the recaoil velocity of H with respect tg i®
lower in average than that in the previous case and the system
is more sensitive to the action of the bending forces. The funnel
effect}8i.e., the decrease of the rotational angular momentum
in favor of the recoil motion between the TS and the products,
has more time to take place, especially for the smallest values
of energy disposal. In other words, the lower the total energy,
the larger the discrepancies between our statistical model and
the dynamical approaches. Nevertheless, the agreement remains
very satisfying in any case. As observed by Dobbyn et al., who
analyzed in some detail the exit-channel effects occurring in
reaction .2, there is also a vibrational de-excitation (Figure 16
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3 , - B. Processes Governed by Long-Range Forcddere, our
method is applied to the reactions N&- NO + 0%* (eq 1.3)
and Ak — Al, + Al? (eq 1.4) which are governed by long-
range forces, at least at low energies of a few kcal/mol. The
2k A\ ST -~ - values of the parameters used are given in Table 3. The results
Kol T are given in Figure 4 (1.3) and Figure 5 (1.4) where PDF are
P(E ) o "~ also showr?® The agreement between the maximjior the

T s >~ distributions obtained using our method and the experimental
1 ."' 1 ones is again very satisfactory, which is not the case for the
: PDF.

IV. Conclusion

0.0 0.25 0.50 0.75 The findings of the present work follow.

E (1) The energy distribution functions for barrier-type unimo-

T lecular reactions of the type AB& AB + C where C is much

3 ; r lighter than A and B (typically a hydrogen atom) have been
* determined (see Table 1). For such processes, we have shown
by recently8 that exit-channel coupling effects are negligible so
™ that the energy partitioning is the same at the transition
state-where the microcanonical postulate can be apptizad
in the products.
P(E ) L (2) The energy distribution functions for three-atom unimo-
< lecular reactions governed by long-range forces (see Table 2)
Lr x 1 have been determined. Both sets of functions in Tables 1 and
. 2 are much more realistic than the prior distribution functions
S of Levine and Bernstein without being more complicated.
Rt (3) The validity of these distributions in the following
] ] processes: (i) ¢4 — C, + H (model alkyl dissociation
E reaction), (i) QH — O, + H, (iii) NO, — NO + O, and (iv)
Al; — Al> + Al has been verified.
5 (4) For (i) a barrier-type reaction and (ii) a reaction which is
barrierless but involves strong angular anisotropies in the exit-
channel part of the potential energy surface, the distributions
derived from our method are much more realistic than those
obtained using PST or SACM.

(%)
s

(=]
7
)
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Appendix A: General Procedure for the Derivation of an
Energy Distribution at the Transition State

We present here the general procedure for the calculation of
both the numerator and the denominator of eq II.1.

1. Coordinate System. The coordinate system used is repre-
) o ) sented in Figure 6.r is the vector joining A and B, anR is
Figure 5. Product distributions for the reaction & Al, + Al; all the one joining G and C where G is the center of mass of AB.

the vibrational levels are taken into account in the rotational angular is the anale betweenandR. i andL are the rotational and
momentum distribution (fourth row in Table 2): QCT (open circles ¢ . 9 -l al .
joined by thin solid lines), PST according to our formulation (thick ~Orbital angular momenta.x(y, 2) is an arbitrary frame such

solid lines), PDF (dashed lines). thatzis alongj. SinceJ equals zero, we have=j, =L =
—L.. Bas is the angle between theaxis andr. fcis the angle

in ref 21). It appears to be sufficiently small, however, for eq between thex-axis andR. A phase space state is thus com-

l.A.1 to be reasonable. pletely defined by a set of seven variabl& Br, 1, pr, |, fc,

It is important to note, even for a hydrogen emission process 5as), WherePr andp; are the momenta conjugate to R and
for which quantum mechanical effects could be expected, the 2. Energy Partitioning at the Transition State. Along the
good accord between the average quantum results and thé€action path, from the TS to the produdg, is supposed to
classical ones as mentioned by the authors of ref 21 (see Figurd?€ Weakly coupled t&r andEr whatever the nature of the TS
3). This finding supports the idea that simple classical models (for instance, see ref 8a, section IlI, point i). In this regard,
may be very efficient in rationalizing energy partitioning in  Vibrational modes are often termed conserved méH?Eh'S
dynamical processes despite the quantum nature of nuclearS due to the fact that in many cases, the potential energy
motions. It should also be mentioned that our method is a V(Rr.¢) can be written as
classical analytical counterpart of the “mapping of transition-
state wavefunctions” proposed by Reisler and co-workets, V(Rr¢) ~ o(r) + V(Rry¢) for R=R (A1)
and the similarity of the results obtained by both methods can
be easily checked. Why it is so is an interesting question but whereu(r) is the free potential energy of AB/(Rre¢) is the
the answer does not seem to be obvious. interaction potential energy between the rigid rotor AB (kept
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Z and

P 6
FErp.E) = [ dI“FR 5, (A.10)

where d" is the volume element defined by
dl' = dRdPy dr dp, dj' d5- dbag (A.12)
and thed;’s are as follows
0, =0("—1]) 9, =0(E, —Hy)

d;=0(R—R) 0, = 6(¢ - arcco%%)) (A.12)
Figure 6. Coordinate system used in this work. 55 — 5(EP _ H) (36 — 6(ET _ HT)

at its equilibrium distances) and C, andR* gives the position  Using a harmonic function for(r), egs A.3 and A.5, the fact
of the TS. The classical Hamiltonian at the TS is that

F)ZR L2 pr2 j2 R)

H=_-"+ o+ AL VvRre) (A2 afCCO%ﬁ) =Pc— bas (A.13)
2u yR? 2m omp

wheremandu are the reduced masses of AB and C with respect

to AB. Accounting for eq A.1 and the rigid rotor (RR)

(see Figure 6), and the theorem concerning the Dirac distribution
of a functionf(x)

approximation = r in the AB-rotational term)H is given n 1
by the sum of the vibrational, rotational, and translational of)) =Y ——ox—x) (A.14)
HamiltoniansHy, Hg, andHy defined as follows: = ()]
H = p_r2+ " A3 (with f(x) = 0 andf’(x) = 0, n being the number of simple
V7 om u(r) (A-3) roots), we find after some algebraic steps that
i2 F(G.E,.0.BE)=1 (A.15)
He = —1— (A.4)
2mr, and
and .
o2 F(Er.¢.E) = j mad Er.0.E) (A.16)
L2
Hy = ZR + = + V(R ro0) (A.5) wherejma(Er.4, E) is the maximunj consistent wittEr, ¢, E
2u andJ = 0. (see Appendices B and C).
3. Energy Constraints. Sincej = L(J=0), H = Ep, and The fluxesF(j,Ev,E), F(Ev,E), F(j,E), F(Er,E), F(Er,E), and
Hv = Ev, we deduce from the previous expressions that F(E) required for the derivation of energy distribution functions
. p2 (see eq II.1) are deduced froR{j,Ey,¢,E) and F(Et,¢,E) as
E., + L E.— V(R¢ ro®) — _R (A.6) follows:
V 2| P Y ZM .
. . _ [%madi.Ev.E) .
with FGEWB= [ 5 9 F(.Ey¢E)
1 1 1 . :
|_ = + T 4o (A-7) = ¢ma>ﬂvEVvE) - ¢min(J:EvaE) (A-17)
mr,”  uR
. Evmax(.E) .
Since the relative kinetic enerd3x?/2u is larger than or equal FGB = Jo. ™ & 9EvFGEE) (A.18)
to zero, eq A.6 leads to the following inequality which gives
the range of variation oEy andj for a givene: F(ERE) = [ diF(,E) 0(Ex —j72mry)  (A.19)
.2 .
_ imadEv.E) . :
Ey + 5 = Bo = V(R ro9) (A.8.2) FEE = [ e dFGEE  (A20)
For analogous reasons, eq A.5 wih = Er implies: _  [9ma{ET.E)
9 q / th = Er imp F(E;E) = f¢ e ¢ F(ELeE) (A.21)
E; = V(R'r.9) (A.8.b)
Below, we also account for the fact that and
B,z E (A.8.c) FE = /™9 dF(B (A.22.2)
4. Flux Integrals. The fluxesF(j,Ey,¢,E) and F(Er,¢,E) Evma®)
of trajectories crossing the TS withEy, ¢, andE on one hand F(E) = onvma dE, F(E,,E) (A.22.b)
andEr, ¢, andE on the other hand are formally given by
FE) = [ JE; F(ErE) (A.22.0)

Pg >
F(.E,¢.E)= [ dr — [0, (A.9)
v i Lo . .
Hos All the boundaries involved in the above integrals are shown
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to be deduced from eq A.8 in the following appendices. For
the sake of convenience, we have ommited any constant
involved in the developments leading te(j,Ev,¢,E) and
F(Er,¢,E). This is unimportant since both the numerator and
the denominator of relation 1.1 are obtained by integrating either
F(,Ev,¢,E) or F(Et,¢,E). In other words, the factor missing

in the numerator of formula 1.1 is also missing in the
denominator.

Appendix B: Reactions Involving a Barrier

1. Rovibrational Energy Distributions. In this work,
V(R re,¢) is assumed to be a quadratic functiongpigiven by

VIR o) = Vot 50 — 9° ®.1)

¢s defines the saddle point for whisH{R¥ re,¢) equals the barrier
heightV,. Because of the symmetry ®{R¥ r.,¢) with respect

to ¢ =z, we limit ¢ to the range [05z]. The actual fluxes are
twice those derived in this condition but as explained at the
end of Appendix A, this does not change the final result given
by formula Il.1. As shown previously, eqs A.8 and B.1 lead to
the following boundary

2

Evmin(:E) = By Eymadi.E) = Ep — Vo — '27 (B.2.a)

jmin(EvsE) = 0 jrad Ev.E) = (21(Ep — Vo — E\))*? (B.2.b)

ima(E) = I(E = V)™ EymaE) =Ep— V,
Ermin(E) =V, (B.2.C)

and because is limited to [0, ], we have if¢s = O (linear
TS)

¢min(j'EV'E) =0
. (2
¢max(J’EVvE) - (E(EP —Vo— By —
and if ¢s = 0 (bent TS)

. ﬁ))l/Z
2

j2 1/2
) ean

ol E0B = 0, (E0 Vo B

Pmai Ev.E) = s+ (E(EP A =V

Figure 7 shows cuts of the potential energy surface (PES) along
the ¢ coordinate at the TS for both casés,= 0 (linear TS)
and¢s = 0 (bent TS). Thep boundaries are displayed in this
figure.

Accounting for these limits and using the first four series of
equations of Table 4, we arrive finally at the normaliR{iEy),
P(), P(Er), and P(Ey) presented in Table 1. Treating the
vibrational motion quantum mechanically leads to the following
vibrational energy distribution:

(Eo— V, — ho(v + 1,))

P, = (B.4)

Vimax

;D(EP -V, — ho(v + '1,))

2. Translational Energy Distribution. Let us now derive
the recoil energy distributiorP(Er). For a givenEr, the
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Figure 7. Cuts of the harmonic potential energy surface (PES) along
the ¢ coordinate at the location of the transition state (TS) and minimum
and maximum values of th¢ angle: (a) in the casgs = 0 (linear
TS); (b) in the cas@s = 0 (nonlinear TS). In case b, there is another
TS corresponding te-¢s. These two TS'’s are connected via a maximum
at¢ = 0. This maximum is supposed to be sufficiently high to justify
the harmonic approximation of the PES aroupgd Moreover, the
bending force constark (see formula B.1) is supposed to be large
enough forgmax to be lower thanr. It justifies the validity of formula
B.3.

TABLE 4: Numbering of the Equations Necessary for the
Calculation of Energy Distributions in the Products of
Three-Atom Unimolecular Reactions Involving a Barrier

P(j,Ev) egs B.3,A.17,B.2.a, A.18, B.2.c, A.22.a, Il.1
PG) same egs as above

P(Er) same egs as aboveeq A.19

P(Ev) eqs B.3,A.17, B.2.b, A.20, B.2.c, A.22.b, II.1
P(Er) egs B.5,B.6, A.16,B.7, A.21,B.2.c,A.22.¢, Il.1

maximum Er is equal toE — Ey. From relation A.4, the
maximum value of consistent withEr and E is thus

im(Er.E) = [2mr(E — E;)]*? (B.5.a)

At the TS, the maximum value @f consistent withEr and ¢,
deduced from eqs A.5 (whekér has been replaced st and
Pr has been kept at zero) and B.1 is

Lu(Ert) = Rl2u(Er — Vo~ 56— 999" @5.)

Sincej = L, j cannot exceelw(Er,¢). Therefore, the maximum
value jmax{ET,¢,E) of j consistent withEr, ¢, andE and the
constraint = 0 is given by

JmadEr.¢,E) = min[Ly (Er.¢); in(Er.E)]  (B.6)

By also using egs A.5 (whetdr has been replaced B and
both Pr andL have been kept at zero) and B.1, we arrive at
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) 1
S ErE) = mao{0; g [F(Er ~ Vo) |

2 112
O ErE) = 6+ [{(Er — Vo) ®.7)

P(Er) (last expression in Table 1) is found using the set of
formulas indicated in the last row of Table 4.

Appendix C: Reactions Governed by Long-Range Forces

1. Rovibrational Energy Distributions. As explained in

section II.C, the system is expected to behave as if the TS were

defined byR* ~ by, where V(R re,¢) ~ 0, so that formulas
A.8.a and A.8.c result in

2

E,<E, < Ep— JZ—I (C.1)
with
-1, L (C.2)
! mre /’lbav

On the other hand, formula A.8.b does not impose any

constraints other thaler = 0, which is true by definition. The
boundaries in integrals A.18, A.20, and A.22 are therefore

2
EVmin(j!E) = EO EVmax(jiE) = Ep - J2_| (C.3.a)

Jmin(Ev.E) =0 imadEv-E) = (2(E- — E\))* (C.3.b)

imad E) = (2AE)"? EvmadE) = Ep Ermin(E) =0

(C.3.0)

whereas those in integral A.17 are (loes not appear in
constraints C.1)

¢min(j'EV7E) =0 ¢ma>ﬂ'Ev:E) =2

The normalizedP(j,Ev), P(j), P(Er), and P(Ev) presented in

(C.4)

Bonnet and Rayez

TABLE 5: Numbering of the Equations Necessary for the
Calculation of Energy Distributions in the Products of
Three-Atom Unimolecular Reactions Governed by Isotropic
Long-Range Forces

P(,Ev) eqs C.4,A.17,C.3.a,A.18,C.3.c,A.22.a,Il.1
P(j) same eqs as above
P(ERr) same egs as aboveeq A.19

P(Ev)
P(Er)

egs C.4,A.17,C.3.b, A.20,C.3.c,A.22.b, 1.1
egsll.2,C.6,C.7,C.8,A.21,C.3.c,A22.¢ .1

spherical symmetry of the potential energy. For the same
reason, we have

¢min(ET!E) =0 ¢ma>&ET!E) =2 (C-S)

P(Er) (last row of Table 2) is found using the series of equations
given in the last row of Table 5.
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