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Energy distribution functions for the products in two classes of three-atom unimolecular reactions performed
in beam experiments are derived which are much more realistic than the prior distribution functions (PDF)
of Levine and Bernstein without being more complicated. In a first step, we deal with light-atom emission
processes governed by short-range forces. Contrary to what is generally believed, we emphasize the
applicability of statistical theory of energy distributions to such reactions in which the change in energy
partitioning from critical configuration to products is weak if not negligible. In a second step, we treat within
the framework of phase space theory (PST) the more usual case of processes governed by long-range forces
for which, however, there exists no realistic distribution functions. Comparison with experimental results or
with results of simulations and/or results obtained using PDF, PST, or the statistical adiabatic channel model
(SACM) is done for the following processes: (i) C2H f C2 + H (model alkyl dissociation reaction), (ii) O2H
f O2 + H, (iii) NO2 f NO + O, and (iv) Al3 f Al2 + Al. For reaction i which proceeds through a barrier
and for reaction ii which is barrierless but involves strong angular anisotropies in the exit-channel part of the
potential energy surface, the distributions derived by our method are much more realistic than those obtained
using PST or SACM.

I. Introduction

Energy distributions among the products of unimolecular
reactions performed in beam experiments are part of the reduced
set of experimentally available microcanonical informations on
chemical reactions.1 The research of the main factors governing
these distributions is a necessary step toward a better under-
standing of gas-phase chemical reactivity.1-4

For processes governed by long-range forces and involving
a long-lived energized molecule before dissociation, the statisti-
cal theory of molecular collisions1,5-13 is perhaps the best
compromise for the qualitative/quantitative study of product
energy partitioning.14 Indeed, this theory is interpretative in
nature since it is based on several assumptions, the main ones
being energy randomization and the concept of transition state
(TS). Moreover, the simplicity of the numerical calculations
involved permits the study of how energy distributions vary
with parameters such as translational energy of the reagents,
exoergicity (for bimolecular reactions), atomic masses, disper-
sion constants, etc.15 Also, some key steps in the development
of the theory lead straightforwardly to the role of angular
momentum constraints. Last but not least, further assumptions
may allow the simplification of the developments, the ultimate
stage being the derivation of simple formulas15 where the
preponderant factors of interest appear explicitly.
For processes proceeding through a tight TS corresponding,

for instance, to a barrier, the dynamics associated with system
motion from critical configuration to productssreferred to as
exit-channel coupling effects16smodify in most cases the energy
partitioning as the system dissociates. Though a statistical
treatment can be used to predict energy distributions at the TS,
there is no simple analytical way to deduce their distortions
upon passing from TS to products. Hence, there is no general
statistical theory of energy distributions applicable to any process

governed by short-range forces as noted in the recent exhaustive
review by Baer and Hase.17

We have shown recently, however, that the rule regarding
the modification of energy partitioning admits some exceptions,
namely reactions of the kind ABCf AB + C where C is a
light atom (typically a hydrogen atom) for which exit-channel
coupling effects are very often negligible whether there is a
barrier or not.18 The reasons why this is so are related to the
short time of residence of the system on the product side of the
critical region (at the usual energies of≈ 1 eV) and to the weak
efficiency of the impulsive mechanism of repulsion between B
and C (see section II.B).19 Energy distributions are thus
expected to be roughly the same at the TS and in the products,
which does not mean that conventional methods such as phase
space theory (PST) which deal with loose TS can be applied.
This is why we devised a method for calculating the recoil
energy distribution at the TS18 (and thus in the final products)
which, to our knowledge, did not previously exist.
The main goal of the present article is to support our previous

analysis in the light of the two following processes

(model alkyl dissociation reaction) and

extensively studied by Wolf and Hase20a,b and Hamilton and
Brumer20c (I.1) and Schinke et al.21 (I.2). Such a work requires
first the extension of our method to three-atom unimolecular
processes performed in beam experiments for which the total
angular momentum is roughly negligible (reactions I.1 and I.2
have been studied using this assumption).22 Due to the
simplicity of the problem, we are able to derive energy
distribution functions, i.e., analytical expressions where the
preponderant factors governing the dynamics appear explicitlyX Abstract published inAdVance ACS Abstracts,November 15, 1997.

C2H f C2 + H (I.1)

O2H f O2 + H (I.2)
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(see Table 1 in section II.B). In this regard, they are much
more realistic than the prior distribution functions (PDF) of
Levine and Bernstein23 without being much more complicated.
We also deal within the framework of PST with the more usual
case of reactions governed by long-range forces for which,
however, a similar treatment does not exist (see Table 2 in
section II.C). The first set of distributions is applied to reactions
I.1 and I.2 (section III.A) whereas the second set is applied to
the following processes (section III.B):

and

studied by Reid, Reisler, and co-workers24 (I.3) and Peslherbe
and Hase25 (I.4). Comparison is done between our method and
(a) dynamical calculations or experimental results and (b)
standard statistical theories such as the PDF method, PST, or
statistical adiabatic channel model (SACM). A conclusion
follows (section IV). The paper may be understood without
the need to read the final appendices where the mathematical
developments are presented.

II. Energy Distribution Functions

A. Bases. The process of interest is of the type ABCf
ABC* f AB + C. In practice, jet-cooled ABC molecules are
optically excited to a pure vibrational level at an energyE′ in
excess of the dissociation energyD0, followed by the unimo-
lecular reaction ABC*f AB + C.24 The energy excess with
respect to the zero-point level of AB isE) E′ - D0. E0 being
the zero-point energy, the energy disposal with respect to the
bottom of the product channel is thusEP ) E + E0. In such
experiments, the average magnitude of the total angular
momentumJ is most of the time so low (about 5 h units for
NO2

26) that we keep it at zero.22 This assumption considerably
simplifies the developments. The coordinate system used in
this paper is given in the first section of Appendix A.
In the interval between the optical excitation and the final

dissociation, ABC* is supposed to wander about in the region
of the phase space associated with the strong coupling region
(SCR). Consequently, the products are equally likely to be on
any trajectory emerging from the SCR, that is, crossing the TS
or dividing surface delimiting the SCR in the direction of the
products. The density of probability that given observablesQ1,
..., QN have the valuesq1, ..., qN at the transition state is thus
given by

whereF(q1, ...,qN, E) is the flux of trajectories crossing the TS
with Q1 ) q1, ...,QN ) qN andE, andF(E) is the total flux of
trajectories crossing the TS withE. In this work, theQi’s are
limited to scalar observables, that is, the vibrational energyEV
of AB, jsor equivalently the rotational energyER of ABsand
the recoil energyET of C with respect to AB. The general
procedure adopted in this paper for the calculation of both the
numerator and the denominator of eq II.1 is presented in
Appendix A.
B. Light-Atom Emission Processes Governed by Short-

Range Forces.For reactions governed by short-range forces,
involving for instance a barrier between reactants and products,
there are in the general case changes in energy partitioning as
the system proceeds from TS to products. These changes are

often referred to as exit-channel coupling effects.16 Applying
the microcanonical postulate of statistical mechanics to the
strong coupling region (SCR) allows for calculating the distribu-
tion of the energy at the TS but there is no simple way to
calculate analytically the transformations this distribution
undergoes from the critical configuration onto the products.
However, we have shown recently18 that when (i) the system
has a linear geometry at the saddle point and (ii) C is very light
with respect to A and B (typically a hydrogen atom), the energy
partitioning does not evolve significantly on the way from the
critical configuration to the products. Feature i causes the
modification of the rotational angular momentum of AB to be
inefficient when B and C repel each other (no impulsive
mechanism) and feature ii makes the relative velocity of C with
respect to AB sufficiently large for the time of residence of the
system on the product side of the barrier to be very short (for
the usual values of the kinetic energy, say≈ 1 eV). In that
region, the torque the rotating diatomic AB creates on the
departing atom C thus has no time for the rotational angular
momentum of AB and orbital angular momentum of C with
respect to AB to exchange motion. Since (a)j does not vary
between the TS and the products and (b) vibrational degrees of
freedom are usually weakly coupled to the remainder of the
Hamiltonian (see Appendix A), the translational energy is also
expected to reach its final value at the critical configuration. In
that case, product energy distributions are identical with energy
distributions at the TS.
The way the energy is partitioned at the TS is central for the

determination of the distributions. As shown in ref 18 and in
section 2 of Appendix A,it is Very important to include the
potential energy of interaction between C and the rigid rotor
AB in the translational energy, in addition to the purely kinetic
terms(see eqs A.1 and A.5). When the system is at the TS, a
large part of the translational energy is in the potential energy.
During the repulsion between C and AB, the potential energy
decreases and the kinetic energy increases such that their sum
ET does not vary (we are still assuming that C is very light). It
is then meaningless to compare the distribution of the kinetic
energy at the TS with that in the products, the later being
obviously much more excited than the former. Using the quasi-
classical trajectory (QCT) method, Wolf and Hase were the
first20b to observe that the sum of the barrier heightV0 and the
kinetic energy at the TS led to a value in good agreement with
the product translational energy. However, replacingV0 by the
potential energy of interaction mentioned above (see eq A.1)
leads to an even better agreement.18

The distribution functions of interest are derived in Appendix
B and are collected in Table 1. The only assumption used is a
harmonic angular dependence of the potential energy at the TS.
As shown further below, feature i (linear geometry at the

saddle point) is not a necessary condition for the validity of the
formulation (reaction I.2, which does not involve a linear TS,
is well-described by our method). Feature i guarantees,
however, an even better agreement between the model and the
dynamical calculations.
C. Reactions Governed by Long-Range Forces.PST is

the simplest microcanonical statistical theory of chemical
reactions governed by long-range forces.5,6,9,10,13 One of the
main assumptions of PST we shall adopt here is that the potential
energy of interaction between AB and C is of the kindV(R) )
-Cn/Rn. Though the angular dependence of the potential energy
is not taken into account, PST has often been shown to lead to
accurate energy distributions.
Consider the reverse reaction of recombination AB+ C f

ABC. The maximum value of the orbital angular momentum

NO2 f NO+ O (I.3)

Al3 f Al2 + Al (I.4)

P(q1, ...,qN) )
F(q1, ...,qN, E)

F(E)
(II.1)
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L consistent with the recombination atET is (for more details,
see ref 13 and references therein)

wherebM(ET), the maximum value of the impact parameter
consistent with the capture atET, is given by

ReplacingbM(ET) in eq II.2, by its average valuebav(E)

does not modify qualitatively the shape ofLM(ET) which results
in

The reason is that the approximateLM(ET) depends onET1/2

whereas the exact one depends onET(1/2-1/n) (see eqs II.2 and
II.3). Moreover, the largern is, the lower the quantitative
difference.
Equation II.2′ suggests that the mechanism of capture is

correctly described by the following assumption: two fragments
colliding with an impact parameterb larger thanbav (bav stands
for bav(E) in the following) do not feel any mutual interaction
all along their motion. On the other hand, a value ofb lower
than or equal tobav makes the probability of capture equal to
one. The TS is thus defined byRq ≈ bav and V(Rq) ≈ 0.

According to the principle of microreversibility, this TS is also
the one for the dissociation process.
The assumption above allows for deriving energy distribution

functions as shown in Appendix C. These functions are
collected in Table 2.

III. Application to Some Processes

A. Processes Governed by Short-Range Forces.Reaction
I.1 (C2H f CdC + H) is a prototype of radical alkyl
dissociation processes such as C2H5 f C2H4 + H. It has been
studied theoretically by Wolf and Hase on various model
potential energy surfaces, using the QCT method.20a,b The
results considered here are the recoil and vibrational energy
distributions P(ET) and P(EV) obtained by Hamilton and
Brumer20c using the surface II.A which involves a barrier of
3.5 kcal/mol along the reaction path. The geometry of the
system at the saddle point is linear. The total energyEp has
been kept at 10 kcal/mol. Since we are dealing with classical
trajectories, there is no zero-point level and the energy excess
E reduces toEp. The other parameters required for the
calculation ofP(EV) andP(ET) (see Table 1) are given in the
first row of Table 3.
Comparison between (i) our energy distribution functions,

(ii) those found using PST, and (iii) QCT calculations is given
in Figure 1. Contrary to PST, our formulation leads to an
excellent agreement between statistical energy distributions and
the QCT results. Hamilton and Brumer20c claim that exit-
channel coupling effects are responsible for the discrepancies
observed between PST and QCT distributions. From our point
of view, this interpretation is questionable since in the very
present case exit-channel coupling effects are negligible. As a
matter of fact, neither the orbital angular momentum of H with

TABLE 1: Energy Distributions among the Products of
Three-Atom Unimolecular Reactions ABCf AB + C
Involving a Barrier along the Reaction Path Separating the
Well and the Productsa

I ( 1

mre
2

+ 1

µRq 2)-1

P(j,EV) 25/2

π(E- V0)
2I1/2

(EP - V0 - EV - j2

2I)
1/2

P(j) 27/2

3π(E- V0)
2I1/2

(E- V0 - j2

2I)
3/2

P(ER) 8((1- F)(E- V0) - ER)
3/2

3π(E- V0)
2 (1- F)2ER

1/2
with F )

mre
2

mre
2 + µRq 2

P(EV) 2

(E- V0)
2
(EP - V0 - EV)

P(ET) π
2
(1- F)1/2(ET - V0) if ET e (1- F)V0 + FE

(F(E- ET)

1- F
(ET - (1- F)V0 - FE))1/2 +

((1- F)1/2(ET - V0)(π
2

-

arcsin[(ET - (1- F)V0 - FE

(1- F)(ET - V0) )1/2]))
if ET > (1- F)V0 + FE

aC is assumed to be very light with respect to A and B (typically a
hydrogen atom).EP is the product energy disposal, that is, the sum of
EV, ET, andER. E is the excess energy equal toEP - E0 whereE0 is
the zero-point energy of AB.m andµ are, respectively, the reduced
masses of AB and C with respect to AB.re is the equilibrium distance
of AB. V0 is the barrier height, i.e., the energy difference between the
saddle point and the bottom of the products valley.

LM(ET) ) bM(ET) (2µET)
1/2 (II.2)

bM(ET) ) [n- 2
n ](2-n)/2n[nCn2ET]

1/n

(II.3)

bav(E) )∫0E dET bM(ET)E
)
n3/2(n- 2)(2-n)/2n

n- 1 (Cn

2E)1/n (II.4)

LM(ET) ≈ bav(E) (2µET)
1/2 (II.2′)

TABLE 2: Energy Distributions in the Products of
Three-Atom Unimolecular Reactions ABCf AB + C
Governed by Isotropic Long-Range Forcesa

bav n3/2(n- 2)(2-n)/2n

n- 1 (Cn

2E)1/n
I ( 1

mre
2

+ 1

µbav
2)-1

P(j,EV) 3

(2E)3/2 I1/2
with E0 e EV e EP - j2

2I
P(j) ( 3

(2E)3/2 I1/2)(E- j2

2I)
P(ER) 3((1- F)E- ER)

4((1- F)E)3/2ER
1/2

with F )
mre

2

mre
2 + µbav

2

P(EV) ( 3

2E3/2)(EP - EV)
1/2

P(ET) ( 3

(2EP)
3/2 I1/2)min[bM(2µET)

1/2; re(2m(E- ET))
1/2]

a That is, those involving a potential energy between AB and C of
the kindV(R) ) -Cn/Rn. M, µ, re, EP andE are defined in the footnote
to Table 1.

TABLE 3. Parameters Used in the Calculations of Energy
Distribution Functionsa

reaction m µ re Rq C6 V0

I.1 6 ≈1 1.33 2.7 3.5
I.2 8 ≈1 1.33 2.2 0
I.3 7.47 10.43 1.21 496
I.4 13.5 18 2.6 38153

a m andµ are in atomic mass units,re andRq in angstroms,C6 in
kcal mol-1 Å-6, andV0 in kcal mol-1.
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respect to C2 nor the rotational angular momentum of C2 vary
significantly from the TS to the separated products.20b More-
over, the distributions we calculate at the TS from our method
are the same as those found in the products by the QCT method,
which tends to prove that both recoil and vibration energies
are conserved during the CH bond cleavage. Hamilton and
Brumer proposed a statistical dynamical approach called “exit
channel corrected PST” (ECCPST).20c This method consists
of running trajectories from the product phase space, the initial
conditions being sampled microcanonically. The trajectories
which do not reach the critical configuration are discarded and
the statistical distributions in the products are built from the
initial conditions of the remaining trajectories. As a matter of
fact, ECCPST leads to the same distributions as those found
from our method. In other words, the distributions do not evolve
from the products to the TS, and by microreversibility, we arrive
at the same conclusion as above, namely energy transfers are
inefficient upon passing from TS to products. The same
conclusion can be deduced for the rotational energy distribution.
Reaction I.2 (O2H f O2 + H) has been studied theoretically

by the Schinke group.21 This is certainly the most complete
theoretical study of a three-atom unimolecular reaction per-
formed so far. They largely focus their analysis on the
distribution of the product rotational angular momentum.
Concerning the shape of the DMBE IV potential energy surface
of Pastrana et al.27 in the transition state area, it turns out that
there is no barrier along the reaction paths defined by two values
of the angleφ between GH and OO (G is the center of mass of
O2), namely 55° and 125°, as can be seen in Figure 18 of ref
21 whereγ has the same meaning asφ. There is however, a
hill between these two paths, the top of which corresponds to
φ) 90°. In other words, there is a barrier along the path defined
by φ ) 90°. Therefore, this reaction is intermediate between
those governed by long-range attractive forces and those
governed by short-range repulsive forces, and the expressions
given in Table 1 cannot be applied directly. Instead, we shall
consider the following reasoning.
As explained in Appendix A,EV is supposed to be weakly

coupled toER and ET from the TS onto the products. The

potential energyV(R,r,φ) can therefore be written as

whereV(r) is the free AB diatomic potential energy,V(R,re,φ)
is the interaction potential energy between the rigid rotor AB
(kept at its equilibrium distancere) andC, andRq gives the
position of the TS. The potential energyV(R,re,φ) in the region
of the TS is roughly the sum of (a) an isotropic attrative term
VA(R) ) V(R,re, 55° or 125°) like those involved in processes
governed by long-range forces, of which the dependence with
respect toR is that ofV(R,re,φ) along the reaction paths and (b)
an angular dependent termVB(φ) ) V(Rq,re,φ) accounting for
the bending motion. To the attractive termVA(R), we apply
the assumption introduced in section II.C, i.e., the system
behaves as ifVA(R) ≈ 0 at the TS, found to be located atRq ≈
2.2 Å by Dobbyn et al.21 Thus, the potential energy at the TS
reduces toVB(φ). Its dependence in terms ofφ is the same as
in Figure 18 of ref 21, the only difference being thatVB(55°) )
VB(125°) ) 0 eV instead of≈ -0.13 eV.
From eqs A.17 and II.1, the probability distributionP(j,Ev)

at the TS is given by

where∆φ(j,EV) is the availableφ angle range consistent with
the constraint (see eq A.8.a)

Figure 2 depicts the calculation ofP(j,Ev). In the left upper
panel a, the right-hand part of eq III.A.3 is represented as a
function of j. In the right upper panel b,VB(φ) is represented
in terms ofφ. For a given value ofj, the availableφ angle
range defined by eq III.A.3 is reported in the lower panel c
according to the graphic procedure suggested by the dashed
lines. The pointP in pannel b corresponding to the hilltop at
90° is connected to the pointP′ in panel c. Forj lower thanjP,
theφ angle domain decreases smoothly since the potential walls
are roughly parallel. Forj larger thanjP, i.e., when the right-
hand part of eq III.A.3 is lower than the energy ofP, the φ
angle domain is significantly shrunk leading to a more abrupt
decrease ofP(j,Ev). Moreover, the largerE, the later the position

Figure 1. Translational (a) and vibrational (b) energy distributions in
the products of the model reaction C2H f C2 + H; QCT (histograms);
PST (solid lines); our method (dashed-dotted lines).

Figure 2. Scheme depicting the calculation of the rotational energy
distributionP(j,EV) as explained in the text.

V(R,r,φ) ≈ V(r) + V(R,re,φ) for Rg Rq (III.A.1)

P(j,EV) ∝ ∆φ(j,EV) (III.A.2)

VB(φ) e EP - EV - j2

2I
(III.A.3)
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of the beak pointP′. This can be observed in Figure 3 which
is similar to Figure 15 extracted from ref 21. It represents
P(j,E0) (for the lowest vibrational level of O2) as obtained by
Dobbyn et al.21 for four resonance energiesE (0.1513 eV,
0.2517, 0.3507, and 0.4471 eV) from four methods: QCT (thick
solid curves), PST according to our formulation (short dashes),
SACM highest populated states (vertical bars), and time-
independent quantum approach (filled circles, thin solid line)
in the fourth case. The quantum results are not those displayed
in Figure 15 of ref 21 but an average of the rotational state
distributions over five energies distributed in a small domain
around 0.4471 eV (see Figure 9 in ref 21). Concerning the
PST results, we have found that the maximumj values for each
resonance energyE, that is,

are in much better agreement with dynamical results than those
obtained with PST as implemented by Dobbyn et al. Equation
III.A.4 has been deduced from eq A.8.a withEV ) E0, EP - E0
) E andV(Rq,re,φ) ) VB(φ) ) 0 (φ ) 55° or φ ) 125°). The
reduced moment of inertiaI of the system is given by eq A.7,
and the parameters used are given in the second row of Table
3. We have added ourP(j,E0) results (dashed-dotted lines)
obtained as described in Figure 2 (see also eq III.A.2 and
III.A.3), VB(φ) being approximated by the following polynomial
expression

with c0 ) - 0.31625,c1 ) - 0.1651,c2 ) - 8.9653× 10-3,
c3 ) 1.9284× 10-4, c4 ) -1.972× 10-6, c5 ) 9.5758× 10-9,
c6 ) -1.7733× 10-11. The validity of our method is clearly

demonstrated from the good agreement between our results and
those from QCT. Dobbyn et al. showed that the rotational state
distribution at the TS as obtained from the trajectories (Pq

QCT)
agrees quite well with the rotational distribution obtained from
a microcanonical selection at the TS (Pq

µ), i.e., a random
selection of the phase space states in the dividing surface (see
Figure 17 in ref 21). Both are in very good agreement with eq
III.A.2, which is not a surprise (at least forPq

µ) since eq III.A.2
is a consequence of the microcanonical assumption at the TS.

In the case of the reaction I.1 (C2H f C2 + H), the total
energyEP (≈0.5 eV) is roughly three times greater that the
barrier heightV0. The recoil velocity between H and C2 is
sufficiently large in average for the bending forces not to have
time enough to act (no funnel effect as shown in ref 18),
preventing any rotational-translational energy transfer. Thus,
there is no difference between product distributions at the TS
and in the products. For reaction I.2 (O2H f O2 + H), the
total energyEP ranging from 0.15 to 0.45 eV is hardly greater
than the top of the hill (≈0.27 eV) except in the fourth case
(0.45 eV). Then, the recoil velocity of H with respect to O2 is
lower in average than that in the previous case and the system
is more sensitive to the action of the bending forces. The funnel
effect,18 i.e., the decrease of the rotational angular momentum
in favor of the recoil motion between the TS and the products,
has more time to take place, especially for the smallest values
of energy disposal. In other words, the lower the total energy,
the larger the discrepancies between our statistical model and
the dynamical approaches. Nevertheless, the agreement remains
very satisfying in any case. As observed by Dobbyn et al., who
analyzed in some detail the exit-channel effects occurring in
reaction I.2, there is also a vibrational de-excitation (Figure 16

Figure 3. Rotational energy distributionP(j,E0) in the products of the
reaction O2H f O2 + H for four values of the excess energyE; QCT
(solid lines); PST according to our formulation (dashed lines); SACM
highest populated states (vertical bars); our method (dashed-dotted
lines); quantum results (filled circles joined by a thin solid line).

jmax(E) ) (2IE)1/2 (III.A.4)

VB(φ) ) ∑
m)0

6

cmφ
m (III.A.5)

Figure 4. Upper panel: maximum value ofj in terms of the excess
energyE in the products of the reaction NO2 f NO+ O; see the right
eq C.3.b withEV ) E0. Lower panel: rotational energy distribution
P(j,E0). Experiment results shown by circles (2Π1/2, filled circles; 2Π3/2,
open circle), third expression of Table 2 by a solid line.
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in ref 21). It appears to be sufficiently small, however, for eq
III.A.1 to be reasonable.
It is important to note, even for a hydrogen emission process

for which quantum mechanical effects could be expected, the
good accord between the average quantum results and the
classical ones as mentioned by the authors of ref 21 (see Figure
3). This finding supports the idea that simple classical models
may be very efficient in rationalizing energy partitioning in
dynamical processes despite the quantum nature of nuclear
motions. It should also be mentioned that our method is a
classical analytical counterpart of the “mapping of transition-
state wavefunctions” proposed by Reisler and co-workers,24,21

and the similarity of the results obtained by both methods can
be easily checked. Why it is so is an interesting question but
the answer does not seem to be obvious.

B. Processes Governed by Long-Range Forces.Here, our
method is applied to the reactions NO2 f NO + O24 (eq I.3)
and Al3 f Al2 + Al25 (eq I.4) which are governed by long-
range forces, at least at low energies of a few kcal/mol. The
values of the parameters used are given in Table 3. The results
are given in Figure 4 (I.3) and Figure 5 (I.4) where PDF are
also shown.23 The agreement between the maximumj or the
distributions obtained using our method and the experimental
ones is again very satisfactory, which is not the case for the
PDF.

IV. Conclusion

The findings of the present work follow.
(1) The energy distribution functions for barrier-type unimo-

lecular reactions of the type ABCf AB + C where C is much
lighter than A and B (typically a hydrogen atom) have been
determined (see Table 1). For such processes, we have shown
recently18 that exit-channel coupling effects are negligible so
that the energy partitioning is the same at the transition
stateswhere the microcanonical postulate can be appliedsand
in the products.
(2) The energy distribution functions for three-atom unimo-

lecular reactions governed by long-range forces (see Table 2)
have been determined. Both sets of functions in Tables 1 and
2 are much more realistic than the prior distribution functions
of Levine and Bernstein without being more complicated.
(3) The validity of these distributions in the following

processes: (i) C2H f C2 + H (model alkyl dissociation
reaction), (ii) O2H f O2 + H, (iii) NO2 f NO + O, and (iv)
Al3 f Al2 + Al has been verified.
(4) For (i) a barrier-type reaction and (ii) a reaction which is

barrierless but involves strong angular anisotropies in the exit-
channel part of the potential energy surface, the distributions
derived from our method are much more realistic than those
obtained using PST or SACM.
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Appendix A: General Procedure for the Derivation of an
Energy Distribution at the Transition State

We present here the general procedure for the calculation of
both the numerator and the denominator of eq II.1.
1. Coordinate System.The coordinate system used is repre-

sented in Figure 6.r is the vector joining A and B, andR is
the one joining G and C where G is the center of mass of AB.
φ is the angle betweenr andR. j andL are the rotational and
orbital angular momenta. (x, y, z) is an arbitrary frame such
that z is along j . SinceJ equals zero, we havej ) jz ) L )
-Lz. âAB is the angle between thex-axis andr . âC is the angle
between thex-axis andR. A phase space state is thus com-
pletely defined by a set of seven variables (R, PR, r, pr, j, âC,
âAB), wherePR andpr are the momenta conjugate to R andr.
2. Energy Partitioning at the Transition State. Along the

reaction path, from the TS to the products,EV is supposed to
be weakly coupled toER andET whatever the nature of the TS
(for instance, see ref 8a, section III, point i). In this regard,
vibrational modes are often termed conserved modes.11 This
is due to the fact that in many cases, the potential energy
V(R,r,φ) can be written as

whereV(r) is the free potential energy of AB,V(R,re,φ) is the
interaction potential energy between the rigid rotor AB (kept

Figure 5. Product distributions for the reaction Al3 f Al2 + Al; all
the vibrational levels are taken into account in the rotational angular
momentum distribution (fourth row in Table 2): QCT (open circles
joined by thin solid lines), PST according to our formulation (thick
solid lines), PDF (dashed lines).

V(R,r,φ) ≈ V(r) + V(R,re,φ) for Rg Rq (A.1)
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at its equilibrium distancere) and C, andRq gives the position
of the TS. The classical Hamiltonian at the TS is

H )
PR
2

2µ
+ L2

2µRq 2
+
pr
2

2m
+ j2

2mr2
+ V(Rq,r,φ) (A.2)

wheremandµ are the reduced masses of AB and C with respect
to AB. Accounting for eq A.1 and the rigid rotor (RR)
approximation (r ) re in the AB-rotational term),H is given
by the sum of the vibrational, rotational, and translational
HamiltoniansHV, HR, andHT defined as follows:

HV )
pr
2

2m
+ V(r) (A.3)

HR ) j2

2mre
2

(A.4)

and

HT )
PR
2

2µ
+ L2

2µRq 2
+ V(Rq,re,φ) (A.5)

3. Energy Constraints. Since j ) L(J)0), H ) EP, and
HV ) EV, we deduce from the previous expressions that

EV + j2

2I
) EP - V(Rq,re,φ) -

PR
2

2µ
(A.6)

with

1
I

) 1

mre
2

+ 1

µRq 2
(A.7)

Since the relative kinetic energyPR2/2µ is larger than or equal
to zero, eq A.6 leads to the following inequality which gives
the range of variation ofEV and j for a givenφ:

EV + j2

2I
e EP - V(Rq,re,φ) (A.8.a)

For analogous reasons, eq A.5 withHT ) ET implies:

ET g V(Rq,re,φ) (A.8.b)

Below, we also account for the fact that

EV g E0 (A.8.c)

4. Flux Integrals. The fluxesF(j,EV,φ,E) andF(ET,φ,E)
of trajectories crossing the TS withj, EV, φ, andE on one hand
andET, φ, andE on the other hand are formally given by

F(j,EV,φ,E) )∫ dΓ
PR
µ ∏

i)1

5

δi (A.9)

and

F(ET,φ,E) )∫ dΓ
PR
µ ∏

i)3

6

δi (A.10)

where dΓ is the volume element defined by

and theδi’s are as follows

δ1 ) δ(j′ - j) δ2 ) δ(EV - HV)

δ3 ) δ(R- Rq) δ4 ) δ(φ - arccos(r ‚RrR )) (A.12)

δ5 ) δ(EP - H) δ6 ) δ(ET - HT)

Using a harmonic function forV(r), eqs A.3 and A.5, the fact
that

arccos(r ‚RrR ) ) âC - âAB (A.13)

(see Figure 6), and the theorem concerning the Dirac distribution
of a functionf(x)

(with f(xi) ) 0 and f ′(xi) * 0, n being the number of simple
roots), we find after some algebraic steps that

and

wherejmax(ET,φ, E) is the maximumj consistent withET, φ, E
andJ ) 0. (see Appendices B and C).
The fluxesF(j,EV,E), F(EV,E), F(j,E), F(ER,E), F(ET,E), and

F(E) required for the derivation of energy distribution functions
(see eq II.1) are deduced fromF(j,EV,φ,E) andF(ET,φ,E) as
follows:

and

All the boundaries involved in the above integrals are shown

Figure 6. Coordinate system used in this work.

dΓ ) dRdPR dr dpr dj′ dâC dâAB (A.11)

δ(f(x)) ) ∑
i)1

n 1

|f ′(xi)|
δ(x- xi) (A.14)

F(j,EV,φ,E) ) 1 (A.15)

F(ET,φ,E) ) jmax(ET,φ,E) (A.16)

F(j,EV,E))∫φmin(j,EV,E)φmax(j,EV,E) dφ F(j,EV,φ,E)

) φmax(j,EV,E) - φmin(j,EV,E) (A.17)

F(j,E) )∫EVmin(j,E)EVmax(j,E) dEV F(j,EV,E) (A.18)

F(ER,E) )∫ dj F(j,E) δ(ER - j2/2mre
2) (A.19)

F(EV,E) )∫jmin(EV,E)jmax(EV,E) dj F(j,EV,E) (A.20)

F(ET,E) )∫
φmin(ET,E)

φmax(ET,E) dφ F(ET,φ,E) (A.21)

F(E) )∫0jmax(E) dj F(j,E) (A.22.a)

F(E) )∫E0EVmax(E) dEV F(EV,E) (A.22.b)

F(E) )∫ETmin(E)E
dET F(ET,E) (A.22.c)
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to be deduced from eq A.8 in the following appendices. For
the sake of convenience, we have ommited any constant
involved in the developments leading toF(j,EV,φ,E) and
F(ET,φ,E). This is unimportant since both the numerator and
the denominator of relation II.1 are obtained by integrating either
F(j,EV,φ,E) or F(ET,φ,E). In other words, the factor missing
in the numerator of formula II.1 is also missing in the
denominator.

Appendix B: Reactions Involving a Barrier

1. Rovibrational Energy Distributions. In this work,
V(Rq,re,φ) is assumed to be a quadratic function ofφ, given by

φs defines the saddle point for whichV(Rq,re,φ) equals the barrier
heightV0. Because of the symmetry ofV(Rq,re,φ) with respect
to φ ) π, we limit φ to the range [0,π]. The actual fluxes are
twice those derived in this condition but as explained at the
end of Appendix A, this does not change the final result given
by formula II.1. As shown previously, eqs A.8 and B.1 lead to
the following boundary

and becauseφ is limited to [0,π], we have ifφs ) 0 (linear
TS)

and if φs * 0 (bent TS)

Figure 7 shows cuts of the potential energy surface (PES) along
the φ coordinate at the TS for both cases,φs ) 0 (linear TS)
andφs * 0 (bent TS). Theφ boundaries are displayed in this
figure.
Accounting for these limits and using the first four series of

equations of Table 4, we arrive finally at the normalizedP(j,EV),
P(j), P(ER), and P(EV) presented in Table 1. Treating the
vibrational motion quantum mechanically leads to the following
vibrational energy distribution:

PV )
(EP - V0 - pω(V + 1/2))

∑
V)0

Vmax

(EP - V0 - pω(V + 1/2))

(B.4)

2. Translational Energy Distribution. Let us now derive
the recoil energy distributionP(ET). For a givenET, the

maximum ER is equal toE - ET. From relation A.4, the
maximum value ofj consistent withET andE is thus

jM(ET,E) ) [2mre
2(E- ET)]

1/2 (B.5.a)

At the TS, the maximum value ofL consistent withET andφ,
deduced from eqs A.5 (whereHT has been replaced byET and
PR has been kept at zero) and B.1 is

Sincej ) L, j cannot exceedLM(ET,φ). Therefore, the maximum
value jmax(ET,φ,E) of j consistent withET, φ, andE and the
constraintJ ) 0 is given by

By also using eqs A.5 (whereHT has been replaced byET and
both PR andL have been kept at zero) and B.1, we arrive at

V(Rq,re,φ) ) V0 + k
2
(φ - φs)

2 (B.1)

EVmin(j,E) ) E0 EVmax(j,E) ) EP - V0 - j2

2I
(B.2.a)

jmin(EV,E) ) 0 jmax(EV,E) ) (2I(EP - V0 - EV))
1/2 (B.2.b)

jmax(E) ) (2I(E- V0))
1/2 EVmax(E) ) EP - V0

ETmin(E) ) V0 (B.2.c)

φmin(j,EV,E) ) 0

φmax(j,EV,E) ) (2k(EP - V0 - EV - j2

2I))
1/2

(B.3.a)

φmin(j,EV,E) ) φs - (2k(EP - V0 - EV - j2

2I))
1/2

φmax(j,EV,E) ) φs + (2k(EP - V0 - EV - j2

2I))
1/2

(B.3.b)

Figure 7. Cuts of the harmonic potential energy surface (PES) along
theφ coordinate at the location of the transition state (TS) and minimum
and maximum values of theφ angle: (a) in the caseφs ) 0 (linear
TS); (b) in the caseφs * 0 (nonlinear TS). In case b, there is another
TS corresponding to-φs. These two TS’s are connected via a maximum
at φ ) 0. This maximum is supposed to be sufficiently high to justify
the harmonic approximation of the PES aroundφs. Moreover, the
bending force constantk (see formula B.1) is supposed to be large
enough forφmax to be lower thanπ. It justifies the validity of formula
B.3.

TABLE 4: Numbering of the Equations Necessary for the
Calculation of Energy Distributions in the Products of
Three-Atom Unimolecular Reactions Involving a Barrier

P(j,EV) eqs B.3, A.17, B.2.a, A.18, B.2.c, A.22.a, II.1
P(j) same eqs as above
P(ER) same eqs as above+ eq A.19
P(EV) eqs B.3, A.17, B.2.b, A.20, B.2.c, A.22.b, II.1
P(ET) eqs B.5, B.6, A.16, B.7, A.21, B.2.c, A.22.c, II.1

LM(ET,φ) ) Rq[2µ(ET - V0 - k
2
(φ - φs)

2)]1/2 (B.5.b)

jmax(ET,φ,E) ) min[LM(ET,φ); jM(ET,E)] (B.6)
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P(ET) (last expression in Table 1) is found using the set of
formulas indicated in the last row of Table 4.

Appendix C: Reactions Governed by Long-Range Forces

1. Rovibrational Energy Distributions. As explained in
section II.C, the system is expected to behave as if the TS were
defined byRq ≈ bav whereV(Rq,re,φ) ≈ 0, so that formulas
A.8.a and A.8.c result in

with

On the other hand, formula A.8.b does not impose any
constraints other thanET g 0, which is true by definition. The
boundaries in integrals A.18, A.20, and A.22 are therefore

whereas those in integral A.17 are (φ does not appear in
constraints C.1)

The normalizedP(j,EV), P(j), P(ER), andP(EV) presented in
Table 2 are determined by using the series of equations given
in the four first row of Table 5. If the vibrational motion is
treated quantum mechanically, the other degrees of freedom still
being treated by classical mechanics,P(EV) becomes

wherepω is the vibrational energy quantum of AB.
2. Translational Energy Distribution. For a givenET, the

maximum ER is equal toE - ET. From relation A.4, the
maximum value ofj consistent withET andE is thus

However, the relationj ) L implies thatj cannot exceedLM(ET)
given by eq II.2′. Therefore,jmax(ET,φ,E) is given by

Obviously, this quantity does not depend onφ due to the

spherical symmetry of the potential energy. For the same
reason, we have

P(ET) (last row of Table 2) is found using the series of equations
given in the last row of Table 5.
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TABLE 5: Numbering of the Equations Necessary for the
Calculation of Energy Distributions in the Products of
Three-Atom Unimolecular Reactions Governed by Isotropic
Long-Range Forces

P(j,EV) eqs C.4, A.17, C.3.a, A.18, C.3.c, A.22.a, II.1
P(j) same eqs as above
P(ER) same eqs as above+ eq A.19
P(EV) eqs C.4, A.17, C.3.b, A.20, C.3.c, A.22.b, II.1
P(ET) eqs II.2′, C.6, C.7, C.8, A.21, C.3.c, A.22.c, II.1

φmin(ET,E) ) 0 φmax(ET,E) ) 2π (C.8)

φmin(ET,E) ) max[0; φs - (2k(ET - V0))1/2]
φmax(ET,E) ) φs + (2k(ET - V0))1/2 (B.7)

E0 e EV e EP - j2

2I
(C.1)

1
I

) 1

mre
2

+ 1

µbav
2

(C.2)

EVmin(j,E) ) E0 EVmax(j,E) ) EP - j2

2I
(C.3.a)

jmin(EV,E) ) 0 jmax(EV,E) ) (2I(EP - EV))
1/2 (C.3.b)

jmax(E) ) (2IE)1/2 EVmax(E) ) EP ETmin(E) ) 0
(C.3.c)

φmin(j,EV,E) ) 0 φmax(j,EV,E) ) 2π (C.4)

PV )
(EP - pω(V + 1/2))

1/2

∑
V)0

Vmax

(EP - pω(V + 1/2))
1/2

(C.5)

jM(ET,E) ) [2mre
2(E- ET)]

1/2 (C.6)

jmax(ET,φ,E) ) min[LM(ET); jM(ET,E)] (C.7)
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